PURPOSE & DESCRIPTION

Filtrex EnviroSoxx® are a temporary or permanent water or storm water biofiltration system used to remove sediment and/or soluble pollutants from water or storm water. This land based, passive biofiltration system uses Compost FilterMedia™ and natural sorbents to remove pollutants from water and storm water. Filtrex EnviroSoxx are customizable, easily installed and maintained, and can be used to target specific pollutants in contaminated water and storm water flows, including but limited to fine sediments (TSS and turbidity), nitrogen, phosphorus, metals, hydrocarbons, and harmful bacteria.

APPLICATION

EnviroSoxx can be applied on bare soil, vegetation, or impervious surfaces in the flow path of sheet flow or concentrated flow storm water to target storm water pollutants. Typical applications include:

• In swales, bioswales, ditches, or channels,
• Around site perimeters,
• Across landscapes or impervious surfaces,
• Around curb or drain inlets,
• As flow or filtration baffles,
• Pretreatment for bioretention, rain garden, storm water ponds, or similar storm water treatment systems,
• Flow velocity reduction,
• Infiltration enhancement,
• Compliance with industrial or municipal storm water permits,
• Part of TMDL, Green Infrastructure, or Low Impact Development ordinances,
• Treatment on or around animal feeding operations, agricultural cropping systems, and mining operations,
• As an integral component of a wholistic, treatment train approach to site storm water management.

ADVANTAGES AND DISADVANTAGES

Advantages

• EnviroSoxx can be used for permanent or temporary pollutant filtration applications.
• EnviroSoxx are easily installed and can establish vegetation in difficult areas.
• EnviroSoxx can be easily designed and incorporated as one treatment in a treatment train approach to storm water management.
• EnviroSoxx can slow down runoff velocity, thereby increasing sediment deposition, reducing the erosive energy of runoff and the potential for soil erosion, and pollutant transport.
• EnviroSoxx can be used to filter pollutants and infiltrate storm water entering or leaving areas where storm water may pass, collect, drain, or be stored.
• EnviroSoxx have the ability to bind and sorb soluble nutrients, metals, and hydrocarbons that may be in storm water runoff, thereby reducing loading to nearby receiving waters.
• EnviroSoxx can remove fine sediments, pathogens, and pesticides from storm runoff preventing pollution of receiving water bodies.
• EnviroSoxx can be customized to handle a variety of water pollutant concentrations, pollutant loads, and water volumes and flow rates.
• EnviroSoxx are available in 8in (200mm) and 12 in (300mm) diameters.
• EnviroSoxx are easily maintained and/or replaced for long-term pollutant filtration applications.
• No trenching is required; therefore soil and plant roots are not disturbed upon installation.
• EnviroSoxx can be installed year around in difficult soil conditions such as frozen or wet ground, and
dense and compacted soils, as long as stakes can be driven.
• EnviroSoxx can be installed on pavement, blacktop, concrete or other hard surfaces as temporary treatment systems.
• EnviroSoxx can be easily installed on top of impervious mats or membranes.
• Microorganisms in FilterMedia and have the ability to degrade organic pollutants and cycle captured nutrients from contaminated water.
• FilterMedia is organic and can be left on site, used in landscape design, and/or seeded and planted with permanent vegetation.
• FilterMedia improves existing soil structure if spread out and used as a soil amendment.
• Humus colloids and organic matter in FilterMedia provide increased water holding capacity and reduced water evaporation to aid in seed germination and the potential for reduced irrigation.
• FilterMedia is organic, all natural, biodegradable, and locally manufactured.
• EnviroSoxx can be used as an integrated management practice for Low Impact Development (LID) design and for possible point accrual in LEED Green Building Certification programs.
• EnviroSoxx may assist in qualification for LEED® Green Building Rating and Certification credits under LEED Building Design & Construction (BD+C), New Construction v4. Awarded credits may be possible from the categories of Sustainable Sites, Water Efficiency, Materials & Resources, and Innovation. Note: LEED is a trademark of the U.S. Green Building Council.

MATERIAL SPECIFICATIONS
EnviroSoxx use only photodegradable or biodegradable Soxx netting materials available from Filtrexx International and are the only mesh materials accepted in creating EnviroSoxx for any application. For Soxx tubular mesh material specifications see Table 4.1.

FILTERMEDIA™ CHARACTERISTICS
EnviroSoxx use a combination of Filtrexx FilterMedia and natural sorbents. FilterMedia is a composted material that is specifically designed for removal of solids and soluble pollutants from storm water runoff by physical trapping, deposition, and chemical sorption mechanisms.

PERFORMANCE
QA/QC material testing of Filtrexx FilterMedia to ensure specifications are met is conducted by the Soil Control Lab, Inc. Scientific research on the performance of EnviroSoxx is extensive and can be located in the Filtrexx Library at http://www.filtrexx.com/en/resources/research-library. Note: the Contractor is responsible for establishing a working effluent filtration, hydrologic, and/or storm water management system and may, with approval of the Engineer, work outside the minimum requirements as needed. Where EnviroSoxx are damaged or ineffective, it shall be repaired or replaced.

DESIGN CRITERIA
Function
The primary function of EnviroSoxx are to remove sediment and soluble pollutants, such as nutrients, heavy metals, petroleum hydrocarbons, and harmful bacteria from storm runoff or contaminated effluent waters. By using a combination of high quality compost media and natural sorbent materials EnviroSoxx are able to chemically sorb soluble pollutants rendering them less toxic and less available
Pollutant Removal - EnviroSoxx®

4.1. Filtrexx EnviroSoxx® Pollutant Removal

to animals and humans, and remove sediment and particulate bound pollutants through deposition and physical filtration mechanisms. EnviroSoxx are specifically designed to target specific pollutants in water and storm water, thereby reducing their concentration and load exiting the system.

Planning Considerations
EnviroSoxx should be used as one treatment in a treatment train approach to storm water management or pollution prevention. Meetings should be conducted to educate site personnel about the devices/practices used and acceptable traffic patterns that avoid running over the filtration system with vehicles and heavy equipment. Vehicular traffic is not permitted on the filtration system because heavy equipment may reduce the effectiveness. Infiltration and runoff velocity reduction practices may be installed upslope from EnviroSoxx to reduce runoff peak flows and pollutant loading entering the filtration system.

Point Source & Non-point Source Influent
If influent is from a point-source discharge the area of entry or contact should be stabilized. Options include an impervious ground layer, turf reinforcement mats, Filtrexx® Channel Protection (see Filtrexx Design Manual Section 2.4), or rip rap. For non-point source influent see the following section.

Sheet and Equalized Flow
To maintain sheet flow or create equalized flow conditions, reduce runoff velocity, and to act as a pretreatment system for sediment removal a shallow gravel trench (level spreader) may be constructed directly upslope from the EnviroSoxx (USEPA, 2006). The gravel trench should be a minimum of 12 in (300mm) wide and 12 in (300mm) deep and filled with pea gravel. Alternatively, a flow equalization cell may be designed at the influent edge of the filtration system. The equalization cell should function as a flow restricting weir, installed perpendicular to flow, to temporarily restrict flow into the EnviroSoxx system.

Sizing and Spacing
There are several options for sizing and spacing EnviroSoxx, ultimately it depends on the goal of the application. The area, slope degree, and slope length of the contributing drainage area, as well as water volume, water influent flow rate, pollutant concentration, pollutant load, and type of pollutants can all affect the size of any filtration system. As each of these parameters increase the pressure on the filtration system increases, therefore the functional size of the system should be increased. Additionally, vegetation density and height will reduce flow velocities and increase pollutant removal efficiencies entering the filtration system.

Design for Bare Soils and Hill Slopes
If EnviroSoxx will be placed on bare soils and/or hillslopes, refer to Maximum Slope Lengths for Filtrexx Perimeter Control, Section 1.1 Filtrexx Sediment Control.

Design for Impervious Surfaces
If EnviroSoxx will be placed on impervious surfaces design based on the hydraulic flow through rate per unit length of the EnviroSoxx. Refer to Table 4.2. Filtrexx EnviroSoxx® Hydraulic Flow Through Rates for each EnviroSoxx diameter. Design and construction of EnviroSoxx in a pyramid configuration is acceptable, extrapolation of the design criteria in this section may be used for this custom design option. Larger diameter EnviroSoxx should never be placed on top of smaller diameters when using the pyramid design configuration.

If the flow rate (Q) entering the EnviroSoxx system is unknown, the Rational Formula (below) can be used as the governing equation to determine Q. Be sure units of measurement for Q are consistent with the units of measurement for hydraulic flow through rates of EnviroSoxx.

\[Q = C \times I \times A \]

Where:

- Q = peak flow rate
- C = runoff coefficient
- I = rainfall intensity
- A = drainage area

EnviroSoxx at a waste transfer station
Design for Swales and Channels
If EnviroSoxx will be placed in a swale or channel, refer to Table 4.3 Spacing and Height for Filtrexx EnviroSoxx® Placed in Channels or Swales. Design and construction of EnviroSoxx in a pyramid configuration is acceptable, extrapolation of the design criteria in this section may be used for this custom design option. Larger diameter EnviroSoxx should never be placed on top of smaller diameters when using the pyramid design configuration.

INSTALLATION
1. Filtrexx EnviroSoxx® shall meet all Filtrexx Specifications.
2. EnviroSoxx shall be placed at locations indicated on plans as directed by the Engineer.
3. EnviroSoxx shall be placed perpendicular to water flow in a manner that allows water or storm water to passively flow through the system.
4. EnviroSoxx shall not be placed in rivers, lakes, streams, or in submerged in water environments.
5. EnviroSoxx must be installed and stabilized before water flow is allowed to enter the filtration system.
6. Land surface shall be cleared of debris, including rocks, roots, large clods, and sticks prior to installation.
7. Land surface may be lightly compacted and graded prior to installation.
8. EnviroSoxx ends should never be abutted, they should be overlapped by a minimum of 2 ft (600mm) to prevent flow bypass. A stake shall be placed in the overlap section, securing the two sections.
9. Once in place, EnviroSoxx shall be lightly compacted to prevent water undercutting.
10. Stakes shall be installed through the middle of the EnviroSoxx on a minimum of 10 ft (3m) centers, using 2 in (50mm) by 2 in (50mm) by 3 ft (1m) wooden stakes. In concentrated flow applications staking may be increased.

11. Stakes shall also be placed at the ends of EnviroSoxx to hold them in place.
12. Minimum staking depth for sand and silt loam soils shall be 12 in (300mm), and 8 in (200mm) for clay soils.

INSPECTION
Routine inspection should be conducted within 24 hours of a runoff or flow event, or as designated by the regulating authority. If product dislodgement occurs, it should be repaired or replaced immediately. If sediment accumulation is 50% of the height of the EnviroSoxx, sediment removal is recommended. Storm debris and trash should be removed immediately.

MAINTENANCE
1. The Contractor shall maintain EnviroSoxx in a functional condition at all times and it shall be routinely inspected.
2. If the EnviroSoxx has been damaged, it shall be repaired, or replaced if beyond repair.
3. The Contractor shall remove sediment at the base of the upslope side of the device when accumulation has reached 1/2 of the effective height, or as directed by the Engineer.
4. If a EnviroSoxx becomes clogged with debris or solids, they shall be maintained so as to assure proper hydraulic flow through. Overflow or undercutting of contaminated water is not acceptable.
5. If minor undercutting occurs, leveling or minor grading of ground surface may be required to increase surface contact with replacement EnviroSoxx.

METHOD OF MEASUREMENT
Bid items shall show measurement as Filtrexx EnviroSoxx® per linear ft or linear meter, per diameter, 8 in [200mm], or 12 in [300mm], as specified by the Engineer.

EnviroSoxx used around a drain
4.1. Filtrexx EnviroSoxx® Pollutant Removal

ADDITIONAL INFORMATION

For other references on this topic, including additional research reports and trade magazine and press coverage, visit the Filtrexx website at www.filtrexx.com.

Filtrexx International, Technical Support
61 N Clev-Mass Rd, Ste E, Akron, OH 44333
877-542-7699 | 234-466-0810 (fax)
www.filtrexx.com | info@filtrexx.com
Call for complete list of international installers.

BactoLoxx, DuraSoxx, EarthBloxx, EnviroBloxx, EnviroSoxx, Filtrexx, GardenSoxx, GreenLoxx, GroSoxx, Let Nature Do It, MetalLoxx, NutriLoxx, PetroLoxx, and Trinity are Registered Trademarks of Filtrexx International.

Filtrexx Certified and its accompanying logo are Service Marks of Filtrexx International.

The information contained herein may be subject to confidential intellectual property of Filtrexx International, including but not limited to US Patents 7,226,240; 7,452,165; 7,654,292; 8,272,812; 8,439,607; 8,740,503; 8,821,076; and 9,044,795 or Patents Pending and is the property of Filtrexx International.

Copyright 2005-2017, Filtrexx International, all rights reserved. Unauthorized reproduction prohibited.

REFERENCES CITED & ADDITIONAL RESOURCES

Faucette, L.B., H. Keener, M Klingman, and K. Kerchner. 2006. Design Capacity Prediction Tool for Sediment control and Silt Fence. Filtrexx® Tech Link #3313 (Description of Design Tool) and Filtrexx® Library #301 (Design Tool)

Faucette, L.B. 2006. Flow-Through Rate, Design Height, and Design Capacity of Sediment control and Silt Fence. Filtrexx® Tech Link #3304

Faucette, L.B. 2006. Design Height, Flow-Through Rate, and Slope Spacing of Sediment control and Silt Fence. Filtrexx® Tech Link #3311

Faucette, B., A. Vick. 2006. LEED Green Building Credits using Filtrexx® Organic BMPs. Filtrexx® Tech Link #3308

Faucette, L.B. A. Vick, and K. Kerchner. 2006. Filtrexx®, Compost, Low Impact Development (LID), and Design Considerations for Storm Water Management. Filtrexx® Tech Link #3306

Table 4.1. Filtrexx EnviroSoxx® Material Specifications.

<table>
<thead>
<tr>
<th>Material Type</th>
<th>Multi-Filament Polypropylene DuraSoxx® (Heavy Duty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Characteristic</td>
<td>Photodegradable</td>
</tr>
<tr>
<td>Design Diameters</td>
<td>5 in (125mm), 8 in (200mm), 12 in (300mm)</td>
</tr>
<tr>
<td>Mesh Opening</td>
<td>1/8 in (3mm)</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>242 psi (16.99 kg/cm²)</td>
</tr>
<tr>
<td>% Original Strength from Ultraviolet Exposure (ASTM G-155)</td>
<td>100% at 1000 hr</td>
</tr>
</tbody>
</table>

Table 4.2. Filtrexx EnviroSoxx® Hydraulic Flow Through Rates.

<table>
<thead>
<tr>
<th>Design Diameter</th>
<th>5 in (125mm)</th>
<th>8 in (200mm)</th>
<th>12 in (300mm)</th>
<th>Testing Lab/Reference</th>
<th>Publication(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulic Flow Through Rate</td>
<td>4.5 gpm/ft (56 L/min/m)</td>
<td>7.5 gpm/ft (94 L/min/m)</td>
<td>11.3 gpm/ft (141 L/min/m)</td>
<td>The Ohio State University, Ohio Agricultural Research and Development Center; University of Guelph, School of Engineering/Watershed Research Group</td>
<td>Filtrexx® Tech Link #3311 & #3313, #3308; American Society of Agricultural & Biological Engineers Meeting Proceedings, 2006, Second Interagency Conference on Research in Watersheds, 2006</td>
</tr>
</tbody>
</table>

Table 4.3. Spacing and Height for Filtrexx EnviroSoxx® Placed in Channels or Swales.

<table>
<thead>
<tr>
<th>Slope Percent</th>
<th>5 in (125 mm)</th>
<th>8 in (200 mm)</th>
<th>12 in (300 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.5</td>
<td>80 (24)</td>
<td>130 (40)</td>
<td>200 (61)</td>
</tr>
<tr>
<td>1</td>
<td>42 (13)</td>
<td>66 (20)</td>
<td>100 (30)</td>
</tr>
<tr>
<td>1.5</td>
<td>28 (9)</td>
<td>44 (13)</td>
<td>66 (20)</td>
</tr>
<tr>
<td>2</td>
<td>22 (7)</td>
<td>36 (11)</td>
<td>54 (16)</td>
</tr>
<tr>
<td>2.5</td>
<td>16 (5)</td>
<td>26 (8)</td>
<td>38 (12)</td>
</tr>
<tr>
<td>3</td>
<td>14 (4)</td>
<td>22 (7)</td>
<td>34 (10)</td>
</tr>
<tr>
<td>3.5</td>
<td>12 (4)</td>
<td>20 (6)</td>
<td>30 (9)</td>
</tr>
<tr>
<td>4</td>
<td>12 (4)</td>
<td>18 (5)</td>
<td>28 (9)</td>
</tr>
<tr>
<td>4.5</td>
<td>12 (4)</td>
<td>18 (5)</td>
<td>26 (8)</td>
</tr>
<tr>
<td>5</td>
<td>10 (3)</td>
<td>18 (5)</td>
<td>24 (7)</td>
</tr>
<tr>
<td>5.5</td>
<td>8 (2)</td>
<td>14 (4)</td>
<td>20 (6)</td>
</tr>
<tr>
<td>6</td>
<td>6 (2)</td>
<td>10 (3)</td>
<td>16 (5)</td>
</tr>
<tr>
<td>6.5</td>
<td>6 (2)</td>
<td>10 (3)</td>
<td>14 (4)</td>
</tr>
<tr>
<td>7</td>
<td>6 (2)</td>
<td>8 (2)</td>
<td>12 (4)</td>
</tr>
<tr>
<td>7.5</td>
<td>6 (2)</td>
<td>8 (2)</td>
<td>12 (4)</td>
</tr>
<tr>
<td>8</td>
<td>4 (1)</td>
<td>6 (2)</td>
<td>10 (3)</td>
</tr>
<tr>
<td>8.5</td>
<td>4 (1)</td>
<td>6 (2)</td>
<td>8 (2)</td>
</tr>
<tr>
<td>9</td>
<td>4 (1)</td>
<td>6 (2)</td>
<td>8 (2)</td>
</tr>
<tr>
<td>9.5</td>
<td>2 (1)</td>
<td>4 (1)</td>
<td>6 (2)</td>
</tr>
<tr>
<td>10</td>
<td>2 (1)</td>
<td>4 (1)</td>
<td>6 (2)</td>
</tr>
</tbody>
</table>
3. COMPOST MATERIAL TO BE DISPERSED ON SITE, AS DETERMINED BY ENGINEER.

NOTES:

FILTREXX® (5", 8", OR 12" TYPICAL) SOXX

Figure 4.1. Engineering Design Drawing for EnviroSoxx

FILTREXX ENVIROSOXX®

WORK AREA

AREA TO BE PROTECTED

SECTION VIEW

FLOW

WORK AREA

TOP VIEW

ENVIROSOXX® CONNECTION/ATTACHMENT DETAIL

OVERLAPPING SECTIONS FORM CONNECTION

CLOSED END

ALTERNATE STAKING OPTION

ENVIROSOXX® PYRAMID STAKING DETAIL

(2) 2"x2"x48+" HARDWOOD STAKES, WRAPPED TOGETHER WITH 16 GAUGE WIRE, 10' O.C.

2"x2"x36" HARDWOOD STAKE, 10' O.C., STARTING 5' FROM ANGLED STAKES