2.2 Filter Strip

PURPOSE & DESCRIPTION
Filtrexx® Filter Strips are a temporary or permanent vegetative filtration practice used to reduce the amount of sediment and soluble pollutants, such as nutrients, heavy metals, and petroleum hydrocarbons, in storm water runoff prior to leaving a site or entering a receiving water or wetland. The primary purpose of a filter strip is to reduce sediment and pollutant loading of surface sheet flow runoff and subsurface flow (interflow) by:

- Reducing pollutant loads by reducing runoff volume,
- Reducing runoff volume through increased water holding capacity and infiltration,
- Increasing infiltration by reducing runoff velocity,
- Trapping and settling of pathogens and sediment by reducing runoff velocity,
- Chemical adsorption of nutrients and metals to humus colloids in compost,
- Recycling of nutrients and metals by plant uptake and microbial decomposition and uptake.

Filter strips consist of a 1 to 2 in (25-50mm) deep layer (135 to 270 cubic yards/acre, 257 to 513 cubic meters/ha) of Filtrexx® GrowingMedia™ blended with a specified seed mix and applied to ground surfaces with pneumatic blower trucks. Planting of perennials such as shrubs and trees will also improve storm water infiltration and filtration of pollutants in storm water.

APPLICATION
Filter strips are generally used for post construction applications where permanent vegetation is established to increase infiltration of storm water and filtration of storm water pollutants. Locations where filter strips may be required or recommended to filter storm runoff include:

- From highways, streets, and parking lots,
- Prior to surface waters, riparian areas, and wetlands,
- Above stream bank or shoreline structural stabilization projects,
- Prior to channels and ditches,
- Prior to bioretention ponds, rain gardens, and storm water detention ponds,
- Around site perimeters where land disturbing/construction activities may occur,
- Prior to structural sediment control devices as a pretreatment practice,
- Around and prior to sediment detention ponds where land disturbing/construction activities may occur.

Filter strips can also be designed to reduce runoff velocity leaving or entering the locations described above. Reducing runoff velocity will increase infiltration of storm runoff, thereby reducing runoff volume and pollutant loading (by increasing the propensity for sediment deposition and decreasing the propensity for pollutant transport). Additionally, GrowingMedia in filter strips will further reduce pollutant loading in storm water by reducing runoff volume and increasing chemical adsorption of soluble pollutants.

Filter strips are generally used in permanent, post-construction applications where a variety of vegetation including legumes, grasses, shrubs and trees can be utilized; however, temporary applications that include fast establishing grasses on or near land disturbing/construction activities are acceptable.

Filter strips can be applied as part of a Low Impact Development design plan or to assist in point accrual in LEED Green Building Certification programs (Filtrexx® Tech Link #3301 and #3306).

ADVANTAGES AND DISADVANTAGES
Advantages
- Filter strips can be used to filter pollutants and infiltrate storm water entering or leaving areas where storm water may pass, collect, drain, or be stored.
- Filter strips remove pollutants from storm water by plant uptake and adsorption to humus colloids present in compost.
- Filter strips remove pathogens and pesticides from storm runoff preventing pollution of receiving water bodies.
- Filter strips can be used for permanent or temporary vegetation pollutant filtration applications.
- Filter strips slow runoff velocity, thereby increasing sediment deposition, reducing the erosive energy of runoff and the potential for soil erosion, and pollutant transport.
- Filter strips absorb rainfall and runoff water, thereby increasing infiltration and reducing runoff volume, sheet erosion, and pollutant loading.
- Filter strips have the ability to bind and adsorb soluble nutrients, metals, and hydrocarbons that may be in storm water runoff, thereby reducing loading to nearby receiving waters.
- Microorganisms in filter strips have the ability to degrade organic pollutants and cycle captured nutrients into beneficial and/or less toxic forms.
- Filter strips are easily applied and establish vegetation in difficult areas.
- Filter strips can easily be spot applied or used with rolled erosion control blankets (RECBs) and turf reinforcement mats (TRMs).
- Filter strips dissipate the energy of rainfall impact, thereby reducing splash erosion.
- Humus colloids and organic matter in filter strips provide physical structure for seed and establishing seedlings.
- Humus colloids and organic matter in filter strips provide increased water holding capacity and reduced water evaporation to aid in seed germination and the potential for reduced irrigation.
- Filter strips can increase ground water recharge by increasing infiltration and percolation.
- Filter strips are a good option for arid and semiarid regions where

<table>
<thead>
<tr>
<th>ADVANTAGES</th>
<th>LOW</th>
<th>MED</th>
<th>HIGH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation Difficulty</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sediment Control</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soluable Pollutant Control</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infiltration Reduction</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Runoff Velocity Reduction</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegetation Establishment</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Performance

QA/QC material testing of GrowingMedia to ensure specifications are met is conducted by the Soil Control Lab, Inc. Although performance testing and scientific research of Vegetated Filter Strips, Compost Erosion Control Blankets, and Compost Filter Socks has been conducted in the last 5 years, little has been conducted on Filter strips. Conservaative assumptions can be made regarding filter strips in light of performance associated with the previously mentioned practices. For performance on these practices see Filtrexx® Compost Erosion Control Blanket, Filtrexx® Sediment Control, and supporting summaries of technical and research reports in the Appendices. Filtrexx International is undergoing research to quantify the performance of filter strips to aid design professionals in the future. For a summary of current results from performance testing results see Table 2.2. Note: the Contractor is responsible for establishing a working storm water management system and may, with approval of the Engineer, work outside the minimum construction requirements as needed. Where the filter strip deteriorates or fails, it shall be repaired or replaced with an effective alternative.

Design Criteria

Function

Filter strips are effective at filtering pollutants from storm runoff under sheet flow, subsurface flow, and shallow concentrated flow conditions due to physical trapping and runoff velocity reduction. Large particles are removed in greater efficiencies than suspended particles. Maintenance is a key consideration, as sediment build-up will significantly reduce the ability of the filter strip to remove pollutants from storm runoff. Pollutant removal efficiency has been correlated to the width of the vegetated filter strip, the density of the vegetation planted, absorption and infiltration characteristics of the soil, slope degree, and slope length leading to the filter strip. The wider the filter strip, the denser the vegetative cover and/or the higher the vegetation holding and infiltration properties of the soil – the greater the pollutant removal efficiency and performance of the vegetated filter strip.

Humus content within the compost GrowingMedia has the ability to chemically absorb and bind soluble pollutants such as phosphorus, ammonium-nitrogen, heavy metals, and petroleum hydrocarbons, making them unavailable for plant or animal uptake (Filtrexx® Tech Link #3307 and #3308). Additionally, many plants have the ability to take up excess nutrients and pollutants trapped in the vegetated filter, while microorganisms can decompose and/or incorporate these pollutants, making them less toxic to aquatic ecosystems. Organic matter supplied in GrowingMedia increases the water holding and infiltration properties of the soil/vegetation complex and increases diversity and population of microorganisms that can decompose and incorporate captured pollutants.

Planning Considerations

Filter strips should be used as one treatment in a treatment train approach to storm water management. Filter strips should be strategically located for connectivity of vegetation and wildlife habitat and corridors in the watershed. Runoff control and runoff diversion practices may be designed to help prevent seed washing and erosion control prior to vegetation establishment and to protect seedlings prior to mature establishment. Preconstruction meetings should be conducted to educate construction site personnel about the devices/practices used and acceptable traffic patterns that avoid
running over filter strips with vehicles and heavy equipment. Vehicular traffic and heavy equipment may reduce the effectiveness of filter strips and contribute to soil compaction, which may increase runoff and erosion and reduce vegetation establishment.

Vegetation Selection
Successful planning for any vegetation establishment project should consider climate, prevailing weather, temperature, sun exposure, prolonged moisture exposure, available moisture/irrigation requirements, topography, soil type, soil pH, soil amendments, nutrient requirements, drought tolerance, time/coordinating with construction phases, site preparation/coordination with construction phases, protection from erosion and sedimentation, runoff velocity potential, and seed mix/plant selection (Fifield, 2001).

Quick establishing annual grasses and legumes are normally specified for temporary applications. Permanent vegetation is usually specified for areas that have undergone final clearing and grading and may require soil stabilization. Perennial grasses are typically specified and if possible native grasses and varieties should be utilized (Fifield, 2001; USDA-NRCS, 2004) as these will be better adapted to local climate, native soil, and hydrology. Permanent vegetated filter strips should also use a variety ecological stands, including legumes and densely planted deep rooted grasses, mid story shrubs, and tall woody tree species. If vegetated filter strips are exposed to prolonged moisture, wetland species may be required. Generally, tall and sturdy grasses are better at sediment removal than low growing, flexible grasses and legumes (Grismer et al., 2006; USDA-NRCS, 2004). Additionally, deep rooted grasses will be more stable under high sheet flow conditions or where concentrated flows may accumulate.

Local landscape architects, NRCS, or cooperative extension should be consulted and used as resources for temporary and/or permanent vegetation establishment plant selection. Many state erosion and sediment control and storm water management manuals have specifications for seed and plant selection and planting requirements. VegSpec, a design program created by the USDA-NRCS, may be a helpful tool for seed and plant selection. It can be accessed at http://plants.usda.gov

Preparation and Application
The land area where filter strips will be applied shall be roughened by horizontal tracking, raking, disking, or harrowing prior to application. The filter strip shall be applied to 100% of the area where vegetation is required and applied at a depth of 1 to 2 in (25-50mm), or 135 to 270 cubic yards/ac (257-513 cubic meters/ha).

To increase infiltration and percolation rates, deep tillage or using a Filtrexx® Engineered Soil is recommended; for more information see standard specifications and design.

To protect from ground water contamination and saturation of vegetation, vegetated filter strips should be separated from ground water from 2 to 4 ft (0.6-1.2 m) (USEPA, 2006).

Drainage Area and Slope Length
The principle design criterion for vegetated filter strips is length of slope, not the contributing area, as the slope length will determine whether concentrated runoff flows, interrill erosion, and destructive runoff velocities will undermine the performance of the vegetated filter strip. For impervious services, runoff concentrates at approximately 75 ft (23 m) of slope length, and for pervious surfaces at 150 ft (46 m) of slope length. Using these criteria, a 25 ft (8 m) wide vegetated filter 580 ft (177 m) long will treat 1 acre (0.4 ha) of contributing runoff from an impervious surface (USEPA, 2006). Additionally, Filter strips should not be used where the contributing drainage area generates sediment loads greater than 10 tons/acre/year (22.5 Mg/ha/yr) (USDA-NRCS, 2004).

Alternatively, the USDA-NRCS (2004) recommends that if RUSLE R factors (soil erodability) are 0-35 the ratio of contributing area to filter strip should be 70:1; R factors between 35 and 175 should have a ratio of 60:1; and R factors above 175 should have a ratio of 50:1.

Slope Degree
Vegetated filter strips perform best on slopes between 2 and 6%. Slopes less than 2% may pond water. Slopes greater than 6% tend to concentrated runoff, which can reduce the effectiveness of the vegetated filter (USEPA, 2006). Vegetated filter strips are not recommended for slopes greater than 15% (Grismer et al., 2006).

Runoff Conditions
Filter strips should not be used in areas where runoff velocities will damage or undermine vegetation. For most grasses a maximum velocity of 4 ft/sec (1.2 m/sec) or a maximum hydraulic shear stress of 2 lbs/ft² (10 kg/m²) is recommended (MD Storm Water Design Manual, 2000).

Width
Pollutant removal efficiency of a vegetated filter strip increases with width. Where possible, vegetated filter strips should be constructed as wide as possible. The specifications in Table 2.1 should be used as a minimum requirement.

Table 2.1. Minimum Width Requirements by Slope Degree for Filter Strips

<table>
<thead>
<tr>
<th>Slope</th>
<th>w/structural sediment control device</th>
<th>Minimum Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3%</td>
<td>Yes</td>
<td>15 ft (5m)</td>
</tr>
<tr>
<td>1-3%</td>
<td>No</td>
<td>25 ft (5m)</td>
</tr>
<tr>
<td>4-7%</td>
<td>Yes</td>
<td>25 ft (5m)</td>
</tr>
<tr>
<td>4-7%</td>
<td>No</td>
<td>35 ft (5m)</td>
</tr>
<tr>
<td>8-10%</td>
<td>Yes</td>
<td>35 ft (5m)</td>
</tr>
<tr>
<td>8-10%</td>
<td>No</td>
<td>50 ft (5m)</td>
</tr>
<tr>
<td>11-15%</td>
<td>Yes</td>
<td>75 ft (5m)</td>
</tr>
<tr>
<td>11-15%</td>
<td>No</td>
<td>100 ft (5m)</td>
</tr>
</tbody>
</table>

Design Options
To maintain sheet flow conditions, reduce runoff velocity, and to act as a pretreatment system for sediment removal a shallow gravel trench (level spreader) may be constructed directly upslope from the vegetated filter strip (USEPA, 2006). The gravel trench should be a minimum of 12 in (300mm) wide and 12 in (300mm) deep and filled with pea gravel. Alternatively, a 12 or 18 in (300mm or 450mm) Filtrexx® Sediment Control (SiltSoxx™) will provide the same function. Ponding depth should not exceed 12 in (300mm) (USEPA, 2006). Polypropylene shall be specified as the required Soxx material. At the down slope base of the vegetated filter strip another Filtrexx® Sediment Control may be installed to slow runoff
velocity and increase the potential for settling of suspended solids in the filter strip.

Establishing & Sustaining Vegetation
Although filter strips increase water holding capacity and reduce evaporation, irrigation may be required to ensure successful establishment. Runoff diversion devices may be utilized to prevent storm runoff from washing seed prior to germination and establishment and reduce erosion prior to temporary stabilization.

Grasses should be mowed and maintained between 4 in. (100mm) and 10 in. (250mm) high. Taller grasses may have a higher sediment removal efficiency and sediment storage capacity than low growing or low maintained grasses.

Filter strips supply humus, organic matter, beneficial microbes, and slow release organic nutrients that can contribute to increased soil quality and plant health. In arid and semi-arid regions or hot and dry weather regular irrigation may be required.

Soil Amendment Function
Filter strips also amend the soil which can provide the following functional benefits: increased soil structure, increased soil aggregates, increased soil aeration, increased infiltration and percolation, increased moisture holding capacity, increased activity of beneficial microbes, increased availability of nutrients, decreased runoff volume and velocity, decreased erosion, and increased plant health and sustainability.

Organic vs. Fertilizer Nutrients
Although most specification and design manuals include fertilizer recommendations or requirements for vegetation, mineral nutrients from fertilizers may not be preferable where vegetation sustainability and water quality are a concern. Filter strips provide organic nutrients which are slow release, provide plant micronutrients, and are less likely to be transported in storm runoff to receiving waters which can lead to pollution and eutrophication of waterways (Faucette et al, 2005).

Weed Establishment
The effects of mulching are known to suppress weed establishment. In addition, invasive weed growth has been more closely associated with mineral fertilizer than organic fertilizer fertility practices (Faucette et al, 2004).

INSTALLATION
1. Filter strips shall meet Filtrexx Filter Strip and Filtrexx Certified GrowingMedia Specifications.
2. Call Filtrexx at 877-542-7699 or visit www.filtrexx.com for a current list of installers and distributors of Filtrexx products.
3. Filter strips will be placed at locations indicated on plans as directed by the Engineer.
4. Filter strips shall be installed down slope and around areas contributing storm runoff polluted with sediment, nutrients, heavy metals, petroleum hydrocarbons, and/or pathogens.
5. Filter strips shall be applied to 100% of the area where a vegetated filter strip is required.
6. Filter strips shall be applied to the soil surface at a depth of 1 to 2 in (25-50mm) or 135 to 275 cubic yards/ac. (257-513 cubic meters/ha).
7. Filter strips designed for maximum infiltration may use Filtrexx® Engineered soil and should consult those installation specifications.
8. Seed shall be thoroughly mixed with the GrowingMedia prior to application or surface applied with GrowingMedia at time of application.
9. Filter strips shall not be installed in areas of concentrated runoff flow.
10. Filter strips shall not be installed in areas where contributing sediment loads are greater than 10 tons/ac/yr (22.5 Mg/ha/yr).
11. Filter strips shall not be installed on slopes greater than 15%.
12. Filter strips shall be applied at a minimum width of 5 ft (4.5 m).

INSPECTION
Routine inspection should be conducted within 24 hrs of a runoff event for the first year after installation, until permanent vegetation has established, or as designated by the regulating authority. If sediment accumulation is 25% of the height of the vegetation, sediment removal is recommended. If rilling occurs or vegetation does not establish, the area of application should be reapplied with a filter strip. If failure continues, the use of runoff diversion devices, compost erosion control blankets, rolled erosion control blankets, or soil stabilizers should be considered. Vegetation practices should always be inspected for noxious or invasive weeds.

MAINTENANCE
1. The Contractor shall maintain the filter strip in a functional condition at all times and it shall be routinely inspected.
2. Filter strips shall be maintained until a minimum of 70% uniform cover of the applied area has been vegetated, permanent vegetation has established, or as required by the jurisdictional agency.
3. Filter strips may need to be irrigated in hot and dry weather and seasons, or arid and semi-arid climates to ensure vegetation establishment.
4. Where a Filter strip fails, rilling occurs, or vegetation does not establish the Contractor will repair or provide an approved and functioning alternative.
5. If a filter strip is damaged by storm water runoff, temporary runoff diversion devices installed above the filter strip may be required.
6. No additional fertilizer or lime is required for vegetation establishment and maintenance.
7. No disposal is required for this product/practice.
8. Regular mowing of filter strips to a minimum height of 4 in (100mm) and a maximum height of 10 in. (250mm) will deter invasive weeds, allow sunlight to kill captured pathogens, and provide maximum sediment removal efficiency and sediment storage capacity in the filter strip.
9. Sediment shall be removed once it reaches 25% of the height of the vegetation (mowed) to prevent diversion of storm runoff and reduction of vegetation health and cover.

METHOD OF MEASUREMENT
Bid items shall show measurement as ‘Filtrexx® Filter Strip per square ft, per square yd, per square meter, per hectare, or per acre installed.

Engineer shall notify Filtrexx of location, description, and details of project prior to the bidding process so that Filtrexx can provide design aid and technical support.
FIELD APPLICATION PHOTO REFERENCES

- Compost Vegetated Filter Strip Along Roadside
- Filter Strip with a SiltSoxx™
- Filter Strip Applied During Construction

ADDITIONAL INFORMATION

For other references on this topic, including additional research reports and trade magazine and press coverage, visit the Filtrexx website at filtrexx.com

Filtrexx International, Technical Support
877-542-7699 | www.filtrexx.com | info@filtrexx.com
Call for complete list of international installers and distributors.

BactoLoxx, branch & leaf logo, DuraSoxx, EnviroSoxx, Filtrexx, GreenLoxx, GroSoxx, Let Nature Do It, MetalLoxx, NutriLoxx, and PetroLoxx, are Registered Trademarks of Filtrexx International.

Filtrexx Certified and its accompanying logo are Service Marks of Filtrexx International.

The information contained herein may be subject to confidential intellectual property of Filtrexx International, including but not limited to US Patents 7,226,240; 7,452,165; 7,654,292; 8,272,812; 8,439,607; 8,740,503; 8,821,076; 9,044,795; 9,945,090; and 9,982,409 or Patents Pending and is the property of Filtrexx International.

Copyright 2005-2020, Filtrexx International, all rights reserved. Unauthorized reproduction prohibited. All statements, product characteristics, and performance data contained herein are believed to be reliable based on observation and testing, but no representations, guarantees, or warranties of any kind are made as to accuracy, suitability for particular applications, or the results to be obtained. Nothing contained herein is to be considered to be permission or a recommendation to use any proprietary process or technology without permission of the owner. No warranty of any kind, expressed or implied, is made or intended.
REFERENCES CITED & ADDITIONAL RESOURCES

Doyle, R., G. Stanton, and D. Wolfe. 1997. Effectiveness of forest and grass buffer filters in improving the water quality of manure-polluted runoff. American Society of Agricultural Engineers Meeting Paper No. 77-2501, St Joseph, MI.

Faucette, L.B., and A. Vick. 2006. LEED Green Building Credits using Filtrexx® Organic BMPs. Filtrexx® Tech Link #3301

Faucette, L.B. A. Vick, and K. Kerchner. 2006. Filtrexx, Compost, Low Impact Development (LID), and Design Considerations for Storm Water Management. Filtrexx Tech Link #3306

Faucette, B. 2006. How Important is Particle Size in Specifications for Compost Erosion Control Blankets. Filtrexx Tech Link #3310

Faucette, B. 2006. C Factors for Compost and Rolled Erosion Control Blankets. Filtrexx Tech Link #3303

Table 2.2. Filter Strip Performance and Design Specifications

<table>
<thead>
<tr>
<th>Performance & Design</th>
<th>Width of Vegetated Filter</th>
<th>Vegetation Type</th>
<th>Slope</th>
<th>Pollutants Removed & Removal Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parsons et al., 1991</td>
<td>14-17 ft (4-5 m)</td>
<td>Bermuda/ Crab Grass</td>
<td></td>
<td>Total P = 26% Total N = 50%</td>
</tr>
<tr>
<td>Barfield et al., 1992</td>
<td>15-30 ft (5-9 m)</td>
<td>Bluegrass/ Fescue Sod</td>
<td>9%</td>
<td>NH4-N = 92-100%</td>
</tr>
<tr>
<td>Young et al., 1980</td>
<td>45 ft (14 m)</td>
<td>Corn/Oat/ Orchard Grass</td>
<td>4%</td>
<td>Total P = 88% Total N = 87%</td>
</tr>
<tr>
<td>Young et al., 1980</td>
<td>45 ft (14 m)</td>
<td>Sorghum-Sudan Grass</td>
<td>4%</td>
<td>Total P = 81% Total N = 84%</td>
</tr>
<tr>
<td>Doyle et al, 1997</td>
<td>13 ft (4 m)</td>
<td>Fescue</td>
<td>10%</td>
<td>Diss. P = 62% NO3-N = 68%</td>
</tr>
<tr>
<td>Dillaha et al., 1989</td>
<td>15-30 ft (5-9 m)</td>
<td>Orchard Grass</td>
<td>5-16%</td>
<td>Total P = 75-87% Total N = 61%</td>
</tr>
<tr>
<td>Patty et al., 1997</td>
<td>20-60 ft (6-18 m)</td>
<td>Ryegrass</td>
<td></td>
<td>TSS = 87-100% Soluble P = 22-89%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NO3-N = 22-89%</td>
</tr>
<tr>
<td>Chi and Petrell, 2006</td>
<td></td>
<td></td>
<td></td>
<td>Iron = 95%</td>
</tr>
<tr>
<td>Ress, 1998</td>
<td>25 ft (8 m)</td>
<td></td>
<td></td>
<td>TS = 76-93%</td>
</tr>
<tr>
<td>Gilley et al., 2000</td>
<td>2.4 ft (0.7 m)</td>
<td></td>
<td></td>
<td>TSS = 50%</td>
</tr>
<tr>
<td>Desbonnette et al., 1994</td>
<td>15 ft (5 m)</td>
<td></td>
<td></td>
<td>TS = 50% Total N = 50% Total P = 50%</td>
</tr>
<tr>
<td>Desbonnette et al., 1994</td>
<td>100 ft (30 m)</td>
<td></td>
<td></td>
<td>TS = 70% Total N = 70% Total P = 70%</td>
</tr>
<tr>
<td>Yu et al., 1993</td>
<td>150 ft (46 m)</td>
<td></td>
<td></td>
<td>TSS = 84% Total P = 40% NO3+N02-N = 20%</td>
</tr>
<tr>
<td>Florida DOT, 1994</td>
<td></td>
<td></td>
<td></td>
<td>Lead = 50% Zinc = 55%</td>
</tr>
</tbody>
</table>

Note: TSS = Total Suspended Solids