

Working with Nature: Stormwater Quality Treatment with Filtrexx EnviroSoxx

Dr. Britt Faucette, PhD, CPESC, LEED AP

Director of Research/Technical Services,

Filtrexx International

Outline

- Stormwater: Gray to Green Infrastructure (LID)
- Compost & Stormwater Volume and Quality
- Compost Applications (BMPs)
- Research, Performance, & Design
- Case Study
- Q/A

Stormwater Impact

- 850 US cities w/ outdated & under-designed SWM infrastructure
- 75% of Americans live near polluted waters
- 48,800 TMDL listed (impaired) water bodies
- \$44,000,000,000 annual total cost to society

Land Use = Hydrology = Pollutant Load = Water Impairment

Source: Sego Jackson, 2001

*water that travels just below the surface

75% of Us Live Near a Polluted Water

- NO DUMPING DIVAINS TO BAY
- Coliform bacteria (10,900 streams)
- Metals Cu, Cd, Cr, Ni, Pb, Zn (8600 streams)
- Nutrients N & P (5300 streams)
- Turbidity/TSS Clay & Fine Silt Sediment (5100 streams)
- Petroleum Hydrocarbons Motor Oil, Diesel Fuel,
 Gasoline (polycyclic aromatic hydrocarbons)

Storm Water Pollution Areas

- What
- Parking Lots, Highways/Streets, Rooftops
- Golf Courses, Lawns, Pet Parks
- Who
- NPDES Stormwater Permits:
- MS4s, Industrial, Construction
- CAFOs

- ✓ Trout/Salmon bearing
- ✓ Endangered species
- ✓ Eutrophic water bodies
- √ Beaches/Recreational
- √TMDL designated streams

Stormwater Treatment BMPs

- Biofilters
- Passive Treatment Systems
- Active Treatment Systems
- Vaults/Black Box
- Chemical Treatment
- Stormwater Ponds

LID/Green Infrastructure Design

How?

- 1. Interception
- 2. Transpiration
- 3. Infiltration
- 4. Evaporation
- 5. Surface Roughness
- 6. Flow Path Disruption
- 7. Biofiltration

Compost Tools

Filter Media

Designed for Optimum
 Filtration & Hydraulic-flow

Growing Media

Designed for Optimum
 Water Absorption & Plant
 Growth

Stormwater BMPs

Erosion & Sediment Control

- Perimeter Control
- 2. Inlet Protection
- 3. Ditch Check
- 4. Filter Ring/Concrete washout
- 5. Slope Interruption
- 6. Runoff Diversion
- 7. Vegetated Cover
- 8. Erosion Control Blanket
- 9. Sediment Trap
- 10. Pond Riser Pipe Filter

Low Impact Development

- 11. Runoff Control Blanket
- 12. Vegetated Filter Strip
- 13. Engineered Soil
- 14. Channel Liner
- 15. Streambank Stabilization
- 16. Biofiltration System
- 17. Bioretention System
- 18. Green Roof System
- 19. Living Wall
- 20. Green Retaining Wall
- 21. Vegetated Rip Rap
- 22. Level Spreader
- 23. Green Gabion
- 24. Bioswale

Sock Specifications

Diam.	8 in	12 in	18 in	24 in	32 in
Weight	13	32	67	133	200
	lbs/ft	lbs/ft	lbs/ft	lbs/ft	lbs/ft
Flow	7.5	11.3	15	22.5	30
	gpm/ft	gpm/ft	gpm/ft	gpm.ft	gpm/ft
Mesh openings	1/8 – 3/8 in				

Natural Stormwater Management

Compost Sock 3-Way Biofiltration

- Physical
 - Traps sediment in matrix of varying pore spaces and sizes
- Chemical
 - Binds and adsorbs pollutants in storm runoff
- Biological
 - Degrades various compounds with bacteria and fungi

Particle Size Specifications

TS Reduction of Sediment Barriers

SAN DIEGO STATE UNIVERSITY	Runoff Exposure	Sediment Exposure	Removal
Filter Sock	•260 gal •1.7 g/ft ² •2.75 ac-in	•850 lbs •150 lbs/ft² •125 t/a	77%
Silt Fence	•260 gal •1.7 g/ft ² •2.75 ac-in	•850 lbs •150 lbs/ft² •125 t/a	72%
Straw Wattle	•260 gal •1.7 g/ft ² •2.75 ac-in	•850 lbs •150 lbs/ft² •125 t/a	59%

filtrexx®

% TSS Reduction of Sediment Barrier

Sediment Summary

% Reduction of TSS & Turbidity

Treatment	TSS	Turbidity
Silt Fence	67	52
Filter Sock	78	63

^{*} Based on rainfall of 3.0 in/hr for 30 min; runoff sediment concentration (sandy clay loam) of 70,000 mg/L.

Stormwater Pollutant Removal w/ Filter Socks

- Britt Faucette¹, Fatima Cardoso^{1&2},
 Eton Codling², Carrie Green², Dan Shelton²,
 Yakov Pachepsky², Gregory McCarty², Andrey Guber²
 - 1. Filtrexx International, Atlanta, GA;
 - 2. USDA-ARS, Beltsville, MD

Compost + Additives

To target specific runoff pollutant

- Fine Sediment

- Nutrients (N & P)
- Bacteria
- Metals
- Petroleum Hydrocarbons

Fine Sediment Removal

Soluble P

Nitrogen Removal

Bacteria Removal

Bacteria (MPN) Exposure

- •Total coliform 200 million/100 mL
- •E. coli 170 million/100 mL
- *Typical* 50,000/100 mL

Metals Removal

		METALS (water extractable)					
Treatment	Parameters (mg)	Cd	Cr	Cu	Ni	Pb	Zn
	Applied	7.915	6.740	7.320	8.070	6.025	6.545
	Soil Surface	0.004	0.019	6.491	0.144	0.154	2.028
X	Total	7.919	6.759	13.811	8.214	6.179	8.573
Lo	Transported to Soxx	0.812	0.490	1.640	1.056	0.937	1.669
FS + MetalLoxx	Runoff Water	0.210	0.221	0.383	0.301	0.144	0.621
	Removal Efficiency*	72	29	70	69	79	57
	Runoff Sediment	0.014	0.039	0.122	0.029	0.105	0.161
	Removal Efficiency*	77	78	45	63	61	47
	Total Runoff	0.224	0.260	0.505	0.330	0.249	0.782
	Removal Efficiency (%)	73	47	70	69	73	53
	Total Runoff	0.224	0.260	0.505	0.330	0.249	0.7

*Relative to Bare Soil w/out Treatment

Petroleum Hydrocarbons

- •Runoff Concentrations = 1,400 mg/L (motor oil), 5,400 mg/L (diesel), and 74 mg/L (gasoline)
- •Runoff Loads = 20,820 mg (motor oil), 77,440 mg (diesel), and 1070 mg (gasoline)

City of Chattanooga

Analysis	2-1- 2007 (Pre- retrofit)	6-8- 2007	8-30- 2007	12-13- 2007	3-19- 2008	1-28- 2009	7-28- 2009	% Reduction
COD	1600	259	255	125	125	405	214	75-93
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	
TSS	1370	208	38	18	24	249	177	82-99
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	
Oil/Grease	107	27	N/A	N/A	5	18	37	65-95
	mg/L	mg/L			mg/L	mg/L	mg/L	

Catch Basin Inlet Filter

- Filter max flow rate = 35 gpm
- Designed overflow system = > 500 gpm
- Uses Compost Filter Media
- Replaceable filter cartridge

The Sustainable BMP

- 100% Recycled (compost)
- Bio-based, organic materials
- Locally manufactured
- Reduces Carbon Footprint
- Uses Natural Principles Biomimicry
 (Natural Capital & Ecosystem Services)
- High Performance

Britt Faucette, Ph.D., CPESC, LEED AP

Director of Research & Technical Services

Ph: 404 687 8393

brittf@filtrexx.com

