

Designing with Nature: LID & Stormwater Quality Treatment with Compost BMPs

Dr. Britt Faucette, PhD, CPESC, LEED AP Director of Research/Technical Services, Filtrexx International

HE DESIGN MANUAL GREEN INFRASTRUCTURE AND ION IMPACT DEVELOPMENT

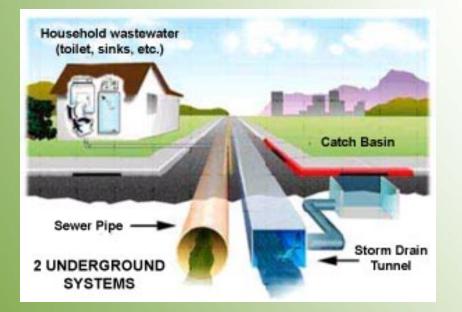
August 7, 2014

Outline

New Sediment and Storm Water Management Technology May

be Greenest Yet

- Stormwater: Gray to Green Infrastructure (LID)
- Compost & Stormwater Volume and Quality
- Compost Applications (BMPs)
- Research, Performance, & Design
- Case Study
- Q/A

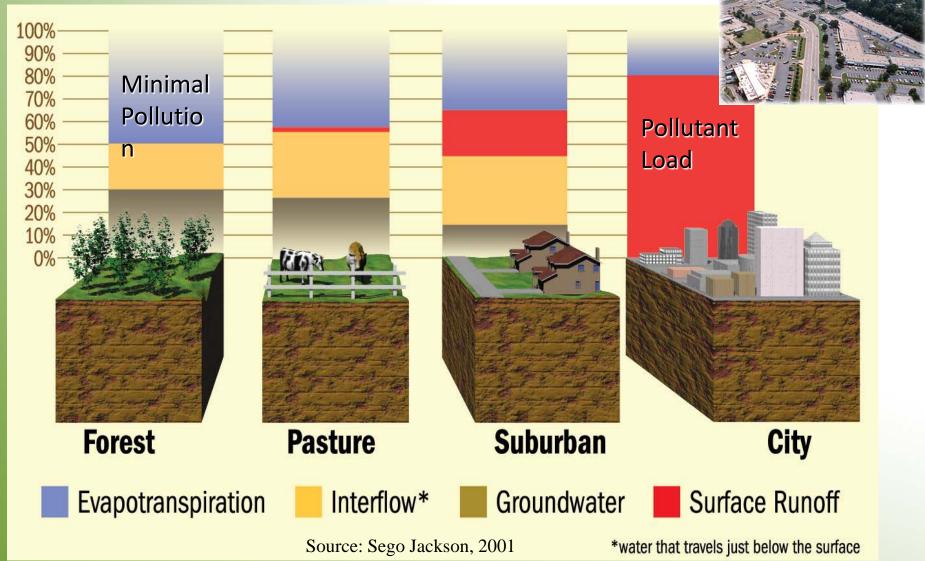

Stormwater Impact

• 850 - US cities w/

- outdated & under-designed SWM infrastructure
- 75% of Americans live near polluted waters
- 48,800 TMDL listed (impaired) water bodies
- \$44,000,000,000 annual total cost to society

Grey Infrastructure is..\$\$\$\$\$

- ✓ Centralize Collection,
 Conveyance & Treatment
- ✓ Land Intensive
- ✓ Infrastructure Intensive
- ✓ Pollution Intensive
- Energy Intensive



Chesapeake Bay Foundation

Land Use = Hydrology = Pollutant Load = Water Impairment

75% of Us Live Near a Polluted Water

- Coliform bacteria (10,900 streams)
- Metals Cu, Cd, Cr, Ni, Pb, Zn (8600 streams)
- Nutrients N & P (5300 streams)
- Turbidity/TSS Clay & Fine Silt Sediment (5100 streams)
- Petroleum Hydrocarbons Motor Oil, Diesel Fuel, Gasoline (polycyclic aromatic hydrocarbons)

Storm Water Pollution Areas

- What Parking Lots, Highways/Streets, Rooftops
 - Golf Courses, Lawns, Pet Parks
- **Who** NPDES Stormwater Permits:
 - MS4s, Industrial, Construction
 - CAFOs, CSOs

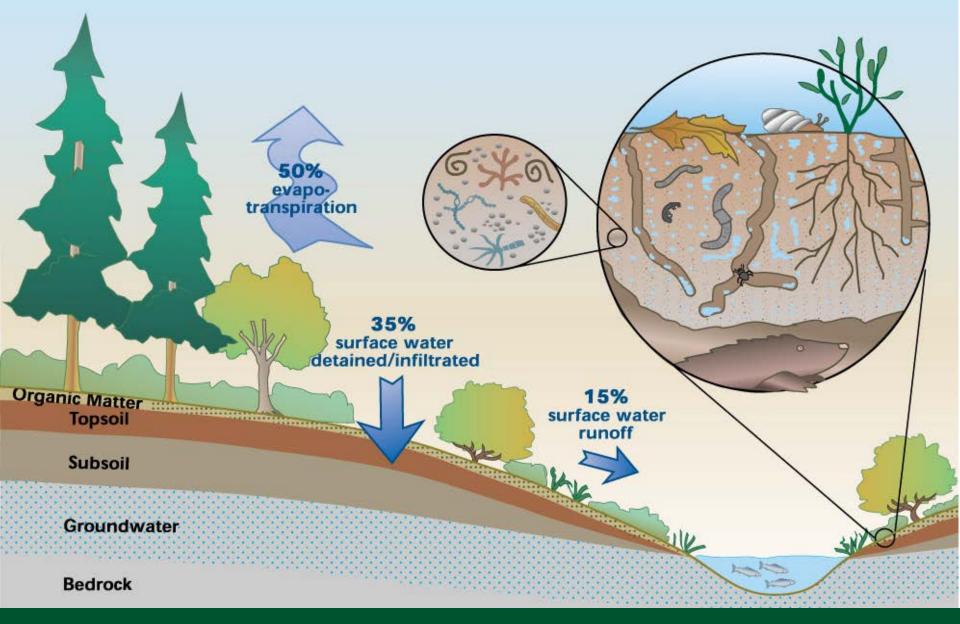
✓ Trout/Salmon bearing
 ✓ Endangered species
 ✓ Eutrophic water bodies
 ✓ Beaches/Recreational
 ✓ TMDL designated streams

Priority Areas

filtrexx®

Low Impact Development (LID) =

hydrology mimics natural site, distributed, decentralized


- Runoff Volume 👢
- Runoff Rate 📕
- Pollutant Loading
- Flooding
- CSOs 👢
- ✓ Water Quality 1
- ✓ Wildlife Habitat/Biodiversity 1
- ✓ Aesthetics/Land Value 1

Green Infrastructure = green stormwater management; site preservation/restoration; integrated design & practices; reuse

Low Impact Development (LID) = restore natural site hydrology; decentralize

Compost Tools

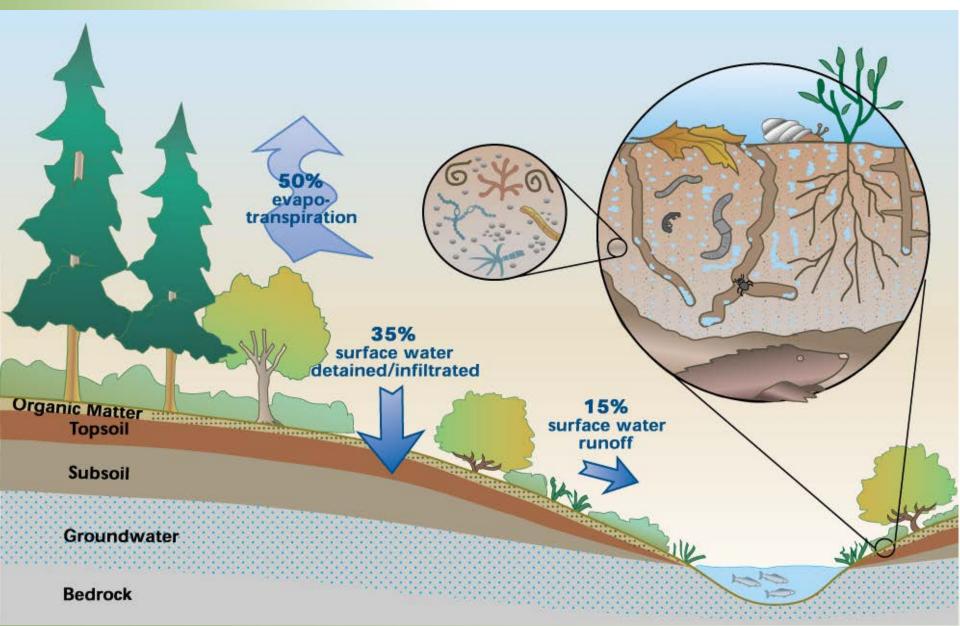
Filter Media

Designed for Optimum
 Filtration & Hydraulic-flow

Growing Media

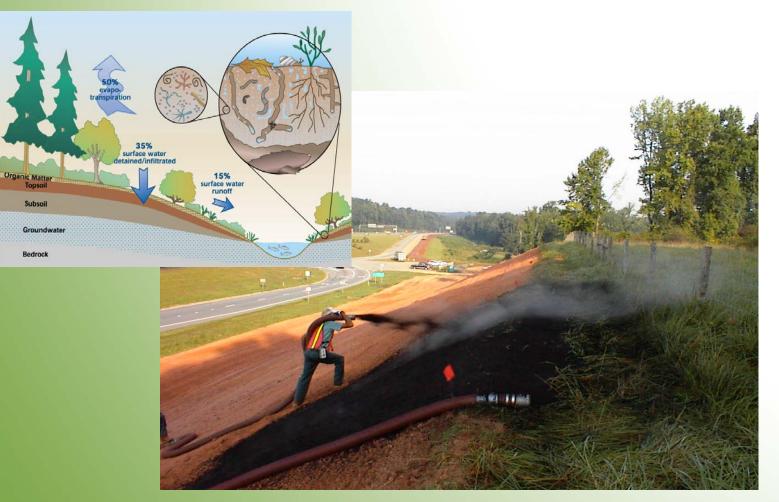
Designed for Optimum
 Water Absorption & Plant
 Growth

Stormwater BMPs

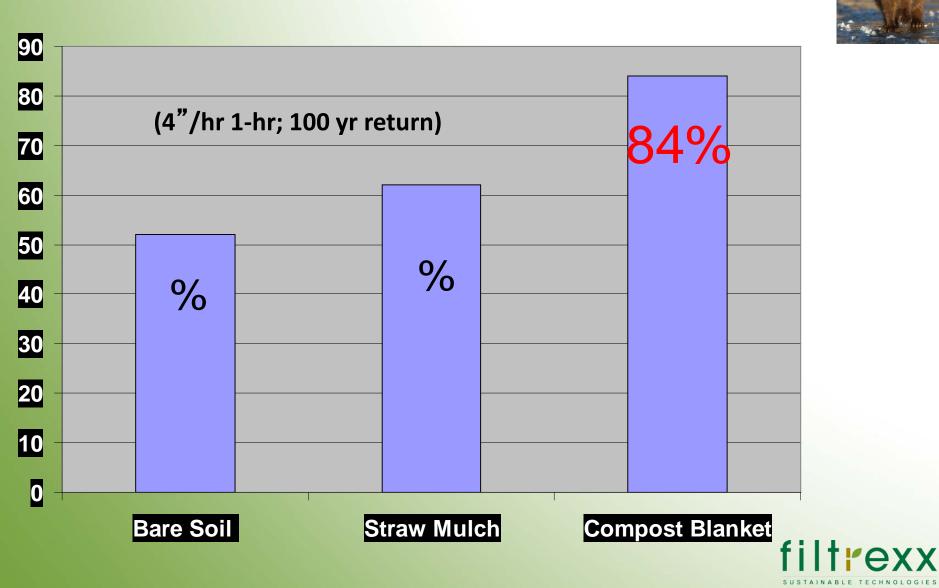

Erosion & Sediment Control

- 1. Perimeter Control
- 2. Inlet Protection
- 3. Ditch Check
- 4. Filter Ring/Concrete washout
- 5. Slope Interruption
- 6. Runoff Diversion
- 7. Vegetated Cover
- 8. Erosion Control Blanket
- 9. Vegetated Sediment Trap
- 10. Pond Riser Pipe Filter

Low Impact Development


- 11. Runoff Control Blanket
- 12. Vegetated Filter Strip
- 13. Engineered Soil
- 14. Channel Liner
- 15. Streambank Stabilization
- 16. Biofiltration System
- 17. Bioretention System
- 18. Green Roof System
- 19. Living Wall
- 20. Green Retaining Wall
- 21. Vegetated Rip Rap
- 22. Level Spreader
- 23. Green Gabion
- 24. Bioswale

Natural Stormwater Management


Runoff + Erosion Control

Designed to: 1) dissipate energy of rain impact; 2) hold, infiltrate
& evaporate water; 3) slow down/disperse energy of sheet flow;
4) provide for optimum vegetation growth

LID: Rainfall Absorption

Runoff Volume Reduction

Reduction	Influencing Factors	Reference		
49%	Sandy clay loam, 10% slope, 1.5" blanket, 3.2 in/hr – 1 hr rain	Faucette et al, 2005		
60%	Sandy clay loam, 10% slope, 1.5" blanket, 4.0 in/hr – 1 hr rain	Faucette et al, 2007		
76%	Silty sand, 2:1 slope, 3" blanket, 1.8 in/hr - 2.4 hr rain	Demars et al, 2000		
90%	Loamy sand, 3:1 slope, 2" blanket, 4.0 in/hr – 2 hr rain	Persyn et al, 2004		

Peak Flow Rate Reduction

Reduction	Influencing Factors	Reference	
36%	Sandy clay loam, 10% slope, 1.5" blanket, 3.2 in/hr – 1 hr rain	Faucette et al, 2005	
42% (30% relative to straw)	Sandy clay loam, 10% slope, 1.5" blanket, 4.0 in/hr – 1 hr rain	Faucette et al, 2007	
79%	Loamy sand, 3:1 slope, 2" blanket, 4.0 in/hr – 2 hr rain	Persyn et al, 2004	

Pollutant Load Reduction: Compost Blanket vs Conventional Seeding

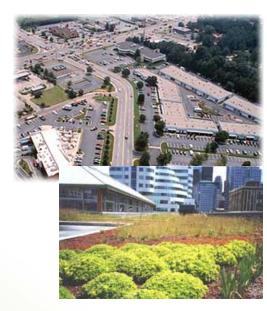
	Total N	Nitrate N	Total P	Soluble P	Total Sediment
Mukhtar et al, 2004 (seed+fertilizer)	88%	45%	87%	87%	99%
Faucette et al, 2007 (seed+fertilizer)	92%	ND	ND	97%	94%
Faucette et al, 2005 (hydromulch)	58%	98%	83%	83%	80%
Persyn et al 2004 (seed+topsoil)	99%	ND	99%	99%	96%

Peak Flow Rate Reduction

Reduction	Influencing Factors	Reference	
36%	Sandy clay loam, 10% slope, 1.5" blanket, 3.2 in/hr – 1 hr rain	Faucette et al, 2005	
42% (30% relative to straw)	Sandy clay loam, 10% slope, 1.5" blanket, 4.0 in/hr – 1 hr rain	Faucette et al, 2007	
79%	Loamy sand, 3:1 slope, 2" blanket, 4.0 in/hr – 2 hr rain	Persyn et al, 2004	

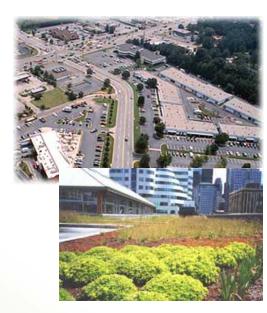
Runoff Curve Numbers

Watershed Surface	Curve Number*
Parking lot, driveway, roof	98
Commercial district	92
Dirt road	82
Residential lot: ¼ ac, ½ ac, 1 ac	75, 70, 68
Cropland	71-81
Pasture	61-79
Public green space	61-69
Woodland and forests	55-66
Brush >75% cover	48
Vegetated Compost Blanket	55


Ecosystem Services: Economics of Grey vs Green SWM

- Compost Blanket vs Impervious Surface
- Area = 10 acres
- Design Storm = 3 in/24 hr
- Stormwater Volume = 54,300 vs 752,100 gallons (1400% increase!)
- Option 1: Containment/Pond:
- Real Estate Value = \$50,000/acre
- SW Pond Design/Construction = \$1/gal

✓ Stormwater Pond (4 ft deep) = 0.5 acre


- \$25,000 (lost usable real estate)

Stormwater Pond Cost = \$697,800 (design/construction)
 - TOTAL = \$722,800

Ecosystem Services: Economics of Grey vs Green SWM

- Compost Blanket vs Impervious Surface
- Area = 10 acres
- Design Storm = 3 in/24 hr
- Stormwater Volume = 54,300 vs 752,100 gallons (1400% increase!)
- Option 2: Off-Site Discharge (Grid):
- Water Conveyance Cost = \$0.26/gal
- Water Treatment Energy Cost = 2 kWh/1000 gal
- Energy Cost = \$0.13/kWh
- Carbon Emission = 2 lbs CO2/kWh
- ✓ Water Conveyance = \$181,428/yr
- Energy Cost = \$91/year
- Carbon Emission = 1,396 lbs/CO2/yr

Compost Tools

Filter Media

Designed for Optimum
 Filtration & Hydraulic-flow

Growing Media

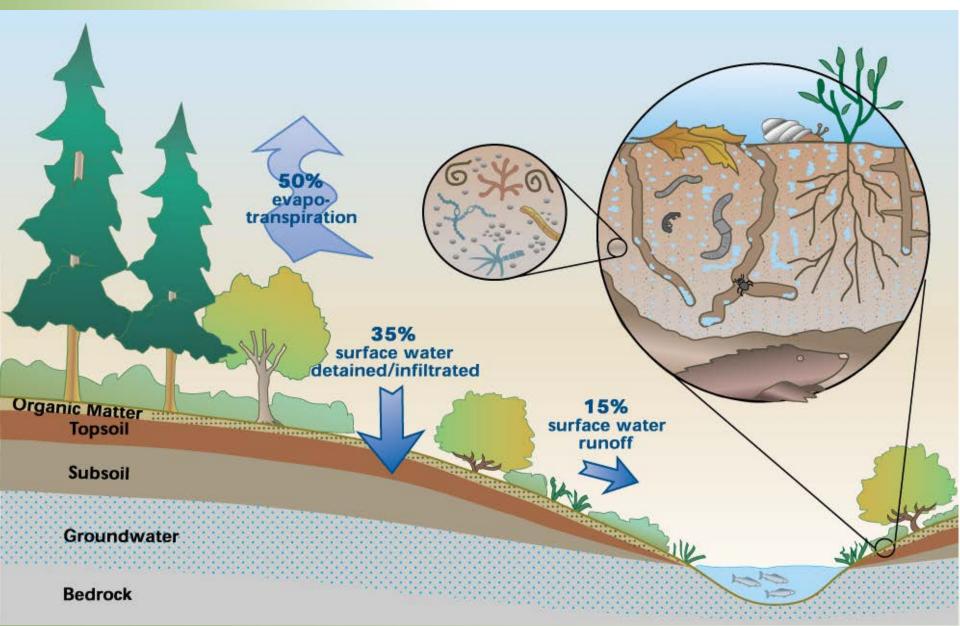
Designed for Optimum
 Water Absorption & Plant
 Growth

Stormwater BMPs

Erosion & Sediment Control

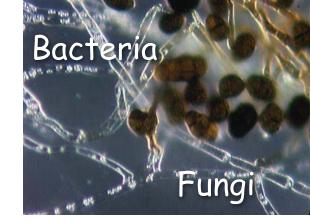
- 1. Perimeter Control
- 2. Inlet Protection
- 3. Ditch Check
- 4. Filter Ring/Concrete washout
- 5. Slope Interruption
- 6. Runoff Diversion
- 7. Vegetated Cover
- 8. Erosion Control Blanket
- 9. Vegetated Sediment Trap
- 10. Pond Riser Pipe Filter

Low Impact Development


- 11. Runoff Control Blanket
- 12. Vegetated Filter Strip
- 13. Engineered Soil
- 14. Channel Liner
- 15. Streambank Stabilization
- 16. Biofiltration System
- 17. Bioretention System
- 18. Green Roof System
- 19. Living Wall
- 20. Green Retaining Wall
- 21. Vegetated Rip Rap
- 22. Level Spreader
- 23. Green Gabion
- 24. Bioswale

Sediment Control/ Stormwater BMPs

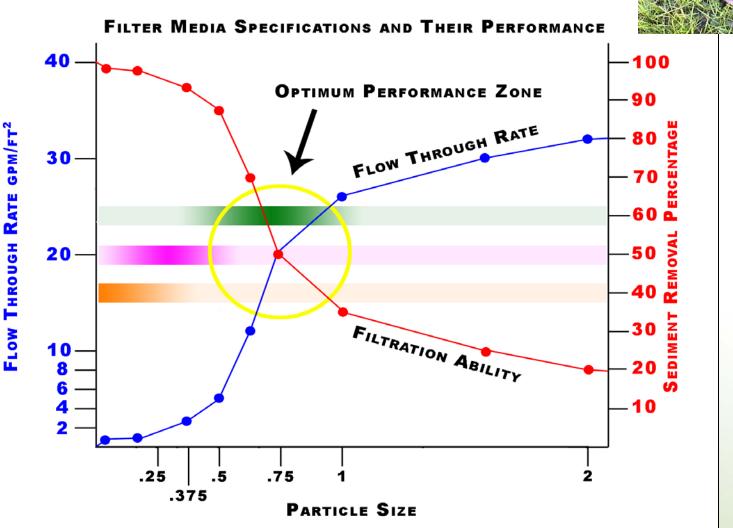
- Silt Fence
- Straw Bale
- Mulch Berm
- Fiber Rolls
- Straw Wattles
- Filtration
- Chemical Treatment
- Stormwater Ponds



Natural Stormwater Management

Compost Sock 3-Way Biofiltration

Physical

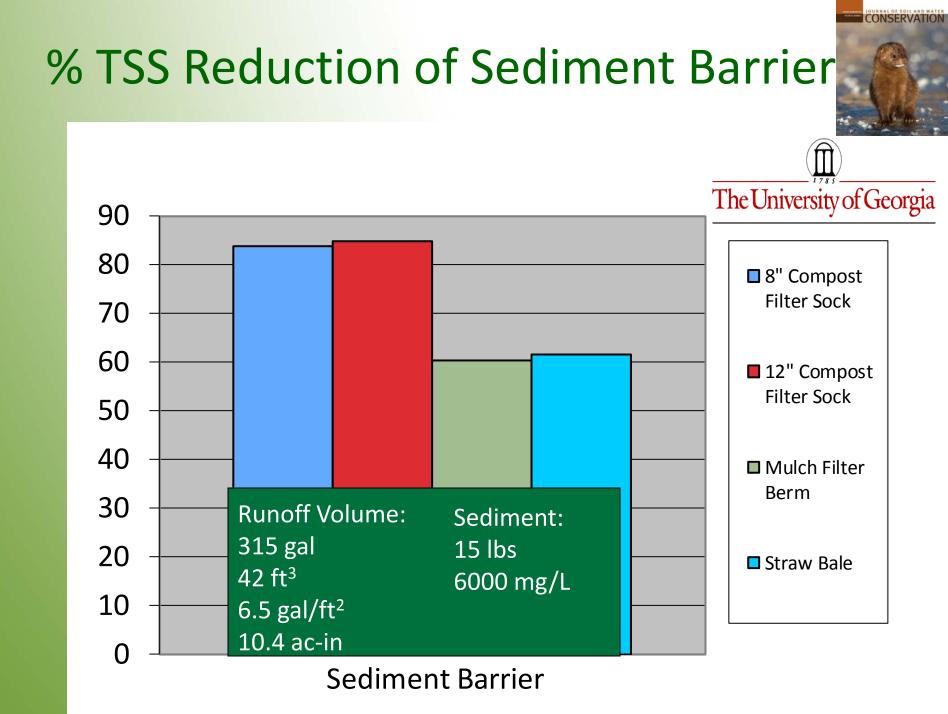


filtrexx

- Traps sediment in matrix of varying pore spaces and sizes
- Chemical
 - Binds and adsorbs pollutants in storm runoff
- Biological

Degrades various compounds with bacteria and fungi

Particle Size Specifications



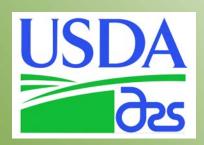
TS Reduction of Sediment Barriers

San Diego State University	Runoff Exposure	Sediment Exposure	Removal
Filter Sock	 260 gal 1.7 g/ft² 2.75 ac-in 	•850 lbs •150 lbs/ft ² •125 t/a	77%
Silt Fence	•260 gal •1.7 g/ft ² •2.75 ac-in	•850 lbs •150 lbs/ft ² •125 t/a	72%
Straw Wattle	•260 gal •1.7 g/ft ² •2.75 ac-in	•850 lbs •150 lbs/ft ² •125 t/a	59%

ASTM 6459 for RECPs

Sediment Summary

% Reduction of TSS & Turbidity


Treatment	TSS	Turbidity		
Silt Fence	67	52		
Filter Sock	78	63		

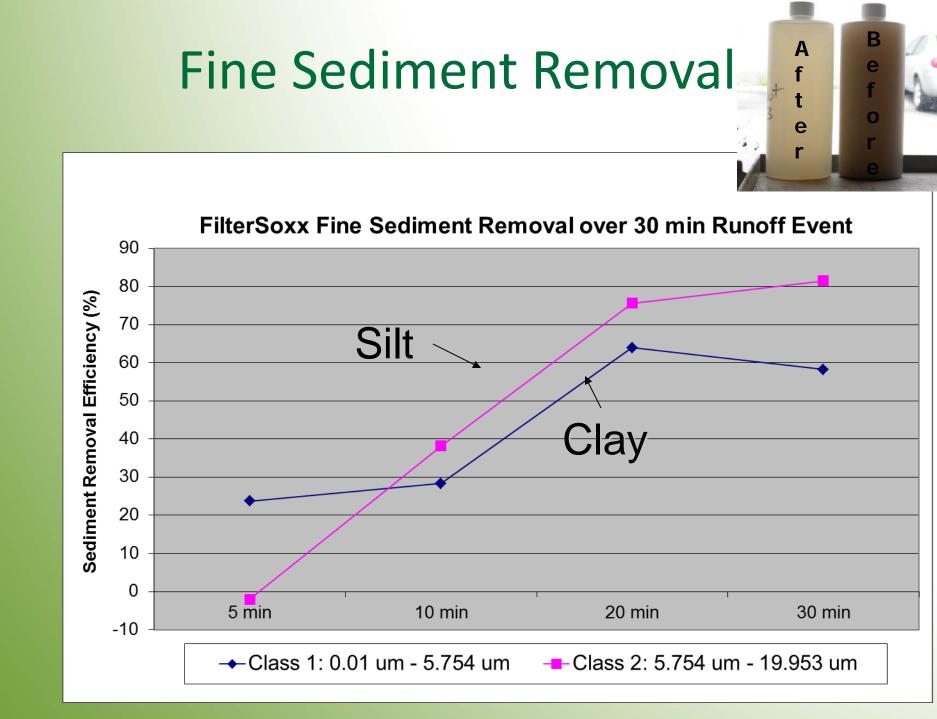
* Based on rainfall of 3.0 in/hr for 30 min; runoff sediment concentration (sandy clay loam) of 70,000 mg/L.

Stormwater Pollutant Removal

	TSS	Turbidit y	Total N	NH ₄ -N	NO ₃ - N	Total P	Sol. P	Total coli.	E. coli.	Metals	Oil	Diesel
Filter Sock	80 %	63%	35 %	35%	25 %	60 %	92%	98%	98%	37- 78%	99 %	99%

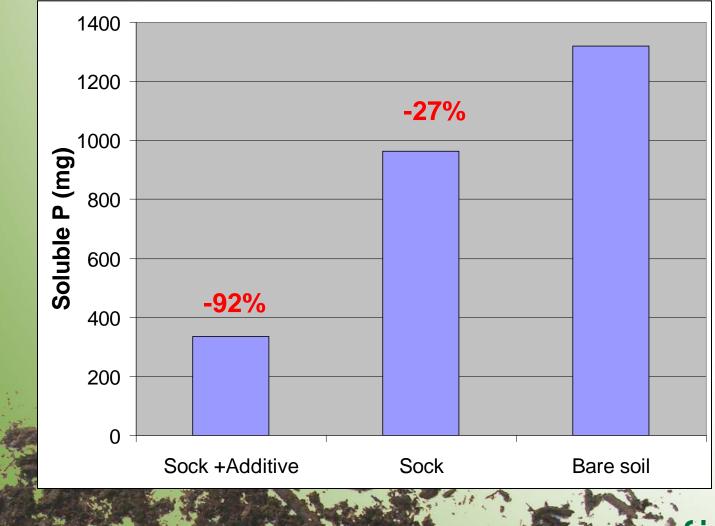
Stormwater Pollutant Removal w/ Filter Socks

- Britt Faucette¹, Fatima Cardoso^{1&2}, Eton Codling², Carrie Green², Dan Shelton², Yakov Pachepsky², Gregory McCarty², Andrey Guber²
 - 1. Filtrexx International, Atlanta, GA;
 - 2. USDA-ARS, Beltsville, MD

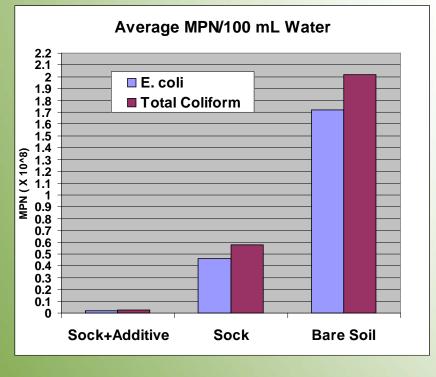


Compost + Additives

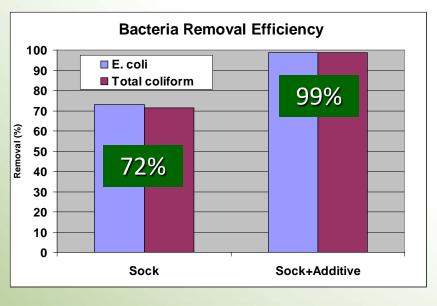
- To target specific runoff pollutant
 - Fine Sediment
 - Nutrients (N & P)
 - Bacteria
 - Metals
 - Petroleum Hydrocarbons



Soluble P



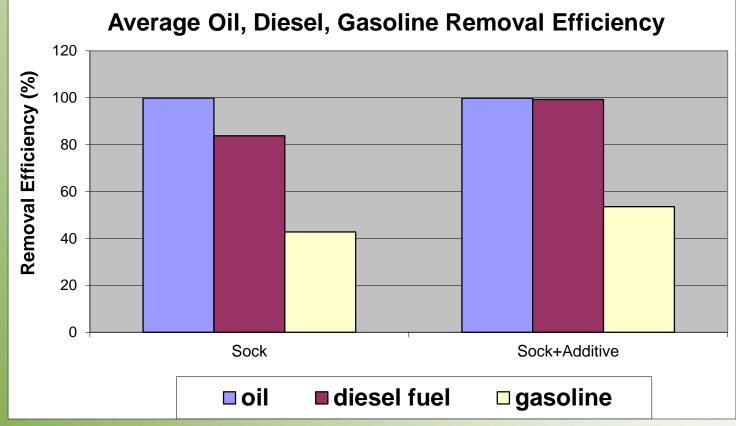
Nitrogen Removal


Bacteria Removal

Bacteria (MPN) Exposure

- Total coliform 200 million/100 mL
- E. coli 170 million/100 mL
- *Typical* 50,000/100 mL

Metals Removal


		METALS (water extractable)						
Treatment	Parameters (mg)	Cd	Cr	Cu	Ni	Pb	Zn	
	Applied	7.915	6.740	7.320	8.070	6.025	6.545	
	Soil Surface	0.004	0.019	6.491	0.144	0.154	2.028	
X	Total	7.919	6.759	13.811	8.214	6.179	8.573	
MetalLoxx	Transported to Soxx	0.812	0.490	1.640	1.056	0.937	1.669	
	Runoff Water	0.210	0.221	0.383	0.301	0.144	0.621	
Me	Removal Efficiency*	72	29	70	69	79	57	
+	Runoff Sediment	0.014	0.039	0.122	0.029	0.105	0.161	
S S S	Removal Efficiency*	77	78	45	63	61	47	
	Total Runoff	0.224	0.260	0.505	0.330	0.249	0.782	
	Removal Efficiency (%)	73	47	70	69	73	53	
*Polotivo to Po	*Polative to Bare Seil w/out Treatment							

filtrexx

*Relative to Bare Soil w/out Treatment

Petroleum Hydrocarbons

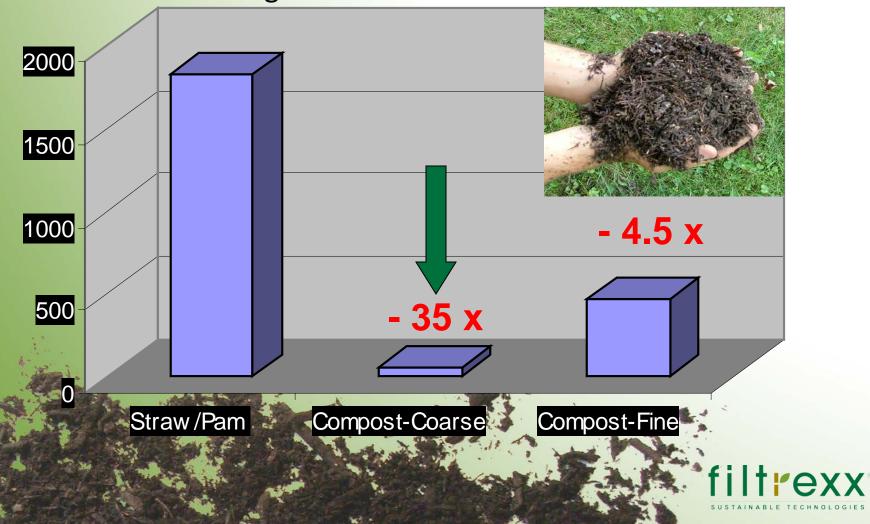
Runoff Concentrations = 1,400 mg/L (motor oil), 5,400 mg/L (diesel), and 74 mg/L (gasoline)
Runoff Loads = 20,820 mg (motor oil), 77,440 mg (diesel), and 1070 mg (gasoline)

City of Chattanooga

	Analysis	2-1- 2007 (Pre- retrofit)	6-8- 2007	8-30- 2007	12-13- 2007	3-19- 2008	1-28- 2009	7-28- 2009	% Reduction
217	COD	1600	259	255	125	125	405	214	75-93
		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	
	TSS	1370	208	38	18	24	249	177	82-99
		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	
	Oil/Grease	107	27	N/A	N/A	5	18	37	65-95
		mg/L	mg/L			mg/L	mg/L	mg/L	

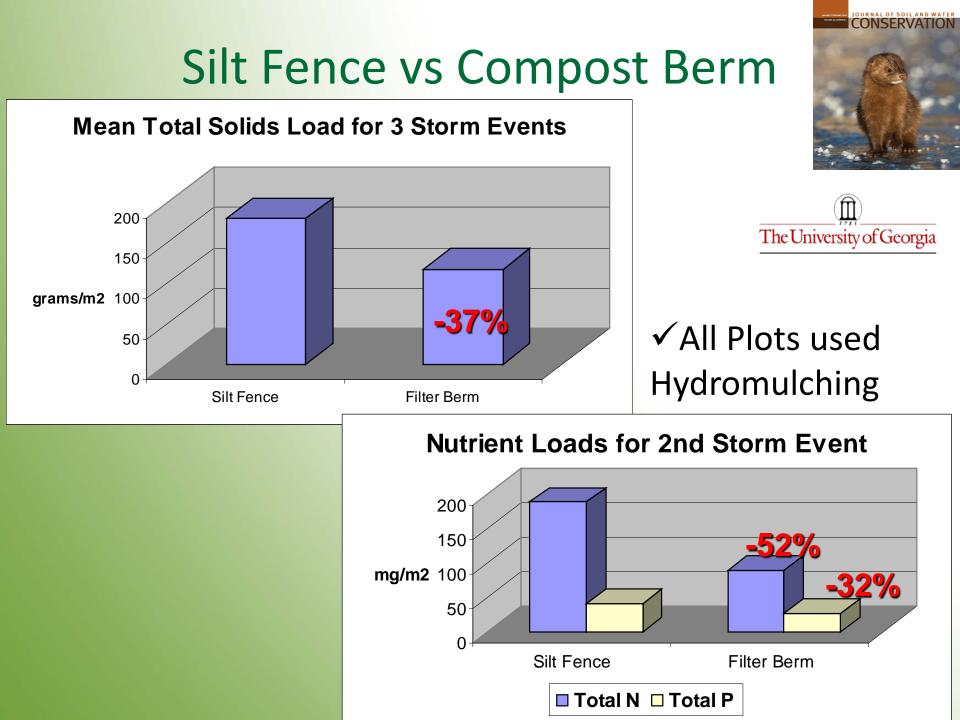
"....an essential tool for engineers, designers, architects, regulators, planners, managers, contractors, consultants, policymakers, builders, and water resource managers." – Forester Press

Contact Me


- Britt Faucette, Ph.D., CPESC, LEED AP Director of Research/Technical Services
- Ph: 678 592 7094 brittf@filtrexx.com
- www.filtrexx.com

Turbidity (NTU)

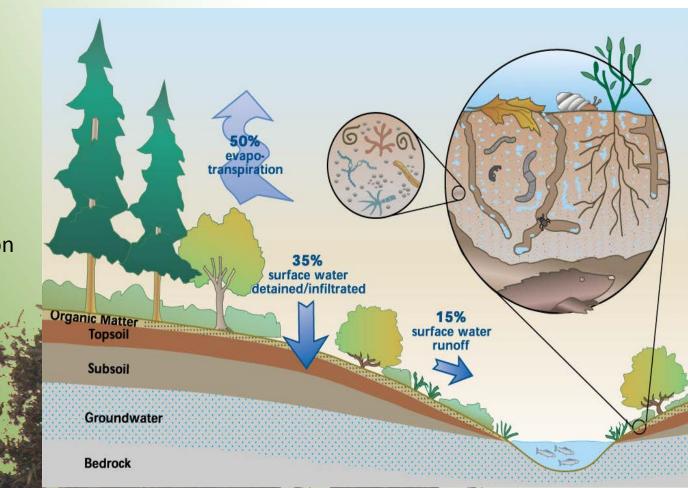
Average from 4-inch Storm Event



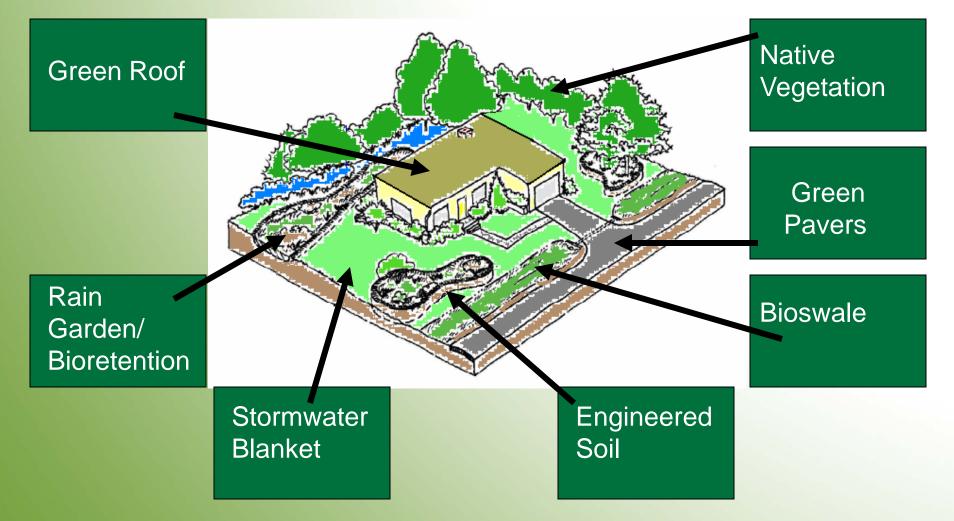
Soil Erosion at 2:1

Erosion Control Practice	Soil loss @ 2 in/hr 20 min (0.67 in)		Soil loss @ 4 in/hr 40 min (2.0 in)		Soil loss @ 6 in/hr 60 min (4.0 in)	
	t/ac	% reduction	t/ac	% reduction	t/ac	% reduction
Bare soil	61	NA	137	NA	171	NA
CECB 2.0 in	0.02	99.8	46	66.8	48	71.9
CECB 1.0 in	0.09	99.1	53	61.1	53	68.9
CECB 0.5 in	29	52.1	96	30.1	72	57.7
Single-net straw	31	48.8	84	38.3	101	40.8
Single-net excelsior fiber	18	70.2	55	60.1	66	61.1
Double-net straw	23	62.7	62	54.7	76	56.0
Double-net coconut fiber	0.05	99.5	36	73.5	71	58.8
Tackifier	12	79.9	60	56.2	101	41.2
РАМ	43	29.9	146	-6.8	158	7.7

Compost Blanket


Hydroseeding

Demo project in Atlanta after 3" Storm Event


Green Infrastructure & Pollutant Reduction Design

How?

- 1. Interception
- 2. Transpiration
- 3. Infiltration
- 4. Evaporation
- 5. Surface Roughness
- 6. Flow Path Disruption
- 7. Biofiltration

Green Infrastructure Site = Max Pollutant Load Reduction

券 Southface

Responsible Solutions for Environmental Living

Eco Office Grand Opening August 18, 2009

✓ 100% rain/stormwater capture
✓ Zero discharge
✓ 84% Water Savings
✓ 130,000 gal/yr

tion,

Southface Eco Office World-class building, local leadership.

Southface

综 Southface

Responsible Solutions for Environmental Living

Real Value of Green Infrastructure

- National average real estate values down 25% from 2007 (-\$82,000)
- Low Impact Development Sites:
 - \$5000 more value/lot
 - \$4000 less cost/lot
 - 6% green infrastructure
 - 15% water quality
 - 5% reduce flooding in flood plain
 - 33-50% energy savings

(Source: NCSU)

Runoff Coefficients

Watershed Surface	Coefficient
Asphalt, concrete, rooftop, downtown area	0.95
Neighborhood, apartment homes	0.7
Single family home site	0.5
Bare graded soil –clay, silt, sand	0.6, 0.5, 0.3
Lawn, pasture	0.1 – 0.35
Undisturbed forest	0.15
Compost blanket	0.1 – 0.32 (0.28)

Reference: GA Storm Water Management Manual, 2001

Design: CECB Thickness based on Slope & 24 Rainfall Total

Slope Angle (≤)	Rainfall = 1.0 in	Rainfall = 2.0 in	Rainfall = 4.0 in
4:1	½ in	2 in	2 in
3:1	½ in	1 in	2 in
2:1	1 in	1 in	1 in

RECP + Hydromulch

Compost Blanket

Compost Fills in the Low Spaces

The Sustainable BMP

- 100% Recycled (compost)
- Bio-based, organic materials
- Locally manufactured
- Reduces Carbon Footprint
- Uses Natural Principles
- (Natural Capital & Ecosystem Services)
- High Performance

Real Value of Green Infrastructure

- National average real estate values down 25% from 2007 (-\$82,000)
- Low Impact Development Sites:
 - \$5000 more value/lot
 - \$4000 less cost/lot
 - 6% green infrastructure
 - 15% water quality
 - 5% reduce flooding in flood plain
 - 33-50% energy savings

(Source: NCSU)

Designing with Nature: LID & Stormwater Quality Treatment with Compost BMPs

Dr. Britt Faucette, PhD, CPESC, LEED AP Director of Research/Technical Services, Filtrexx International

HE DESIGN MANUAL GREEN INFRASTRUCTURE AND ION IMPACT DEVELOPMENT

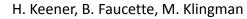
August 7, 2014

Results: CECB Thickness & Slope Steepness

CECB Thickness (in)	Slope Angle (H:V)		il loss @ 2 in/hr Soil loss @ 4 0 min (0.67 in) 40 min (2.0			Soil loss @ 6 in/hr 60 min (4.0 in)	
		t/ac	% reduction	t/ac	% reduction	t/ac	% reduction
Bare soil	2:1	61	NA	137	NA	171	NA
2.0	2:1	0.02	99.8	46	66.8	48	71.9
1.0	2:1	0.9	99.1	53	61.1	53	68.9
0.5	2:1	29	52.1	96	30.1	72	57.7
Bare soil	3:1	55	NA	132	NA	144	NA
2.0	3:1	0.09	99.0	26	80.1	35	75.7
1.0	3:1	0.25	97.4	18	86.4	72	50.4
0.5	3:1	0.9	90.0	94	29.1	100	30.5
Bare soil	4:1	72	NA	108	NA	110	NA
2.0	4:1	0.005	100.0	9	91.4	19	82.6
1.0	4:1	0.37	96.8	42	61.4	60	45.9
0.5	4:1	0.25	98.2	56	48.4	68	38.0

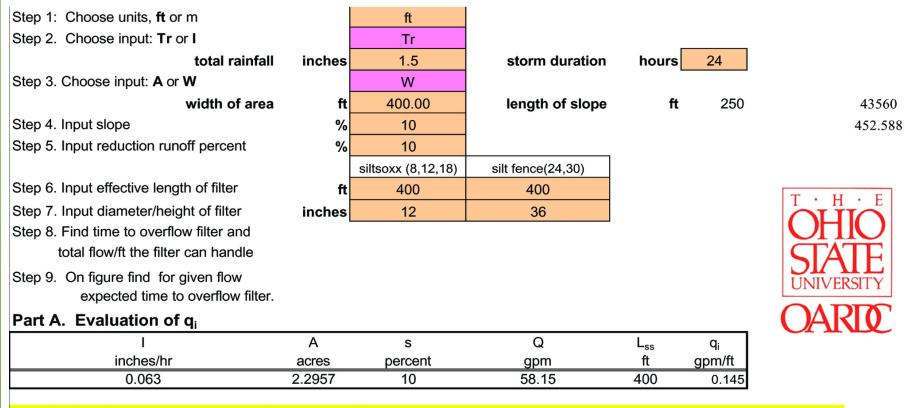
USLE C Factors

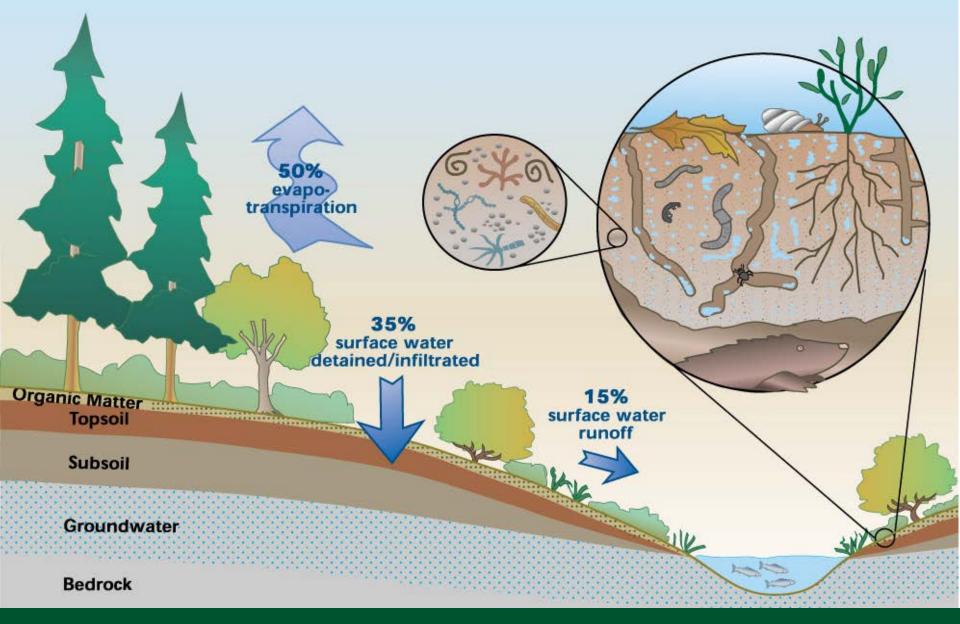
$A = R \times K \times LS \times \mathbf{\underline{C}} \times P$


Erosion Control	C Factor	Reference		
Bare Soil	1.0			
Wood Mulch	0.08-0.16	Demars and Long, 1998; Faucette et al, 2004		
Straw Mulch	0.08-0.19	Demars and Long, 1998; Faucette et al, 2006		
Compost Blanket	0.01-0.07	Mukhtar et al, 2004; Demars and Long, 1998; Demars al, 2000; Faucette et al 2005; Faucette et al, 2006		
Forest floor	0.001	GA SWCC, 2000		

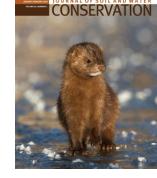
Hydraulic Design Capacity of Filter Socks & Silt Fence in Runoff Control Applications

Flow through rates were <u>50%</u> greater for filter socks


12" Compost sock = 24" silt fence18" Compost sock = 36" silt fence



Filter Sock Design Tool


Part B. Predicted time and total flow to top filter.

	q₀ gpm/ft	D inches	Effective D inches	time overflow hr	total flow gal/f	Filter Okay time > tr
SiltSoxx [™] (Coarse Material)	0.145	12	9.6	99.1	865	OKAY
Silt Fence	0.145	36	30.6	97.5	851	OKAY

Low Impact Development (LID) = restore natural site hydrology; decentralize

Total Soil Loss

Hydromulch vs Compost Blanket: Two 3"/hr storm events

✓ Day 1 = 2,750 & 1,230 lb/ac ✓ 3 mo = 1,960 & 115 lb/ac

RECP + Hydromulch

Compost Blanket

Compost Fills in the Low Spaces

Particle Size Matters

Treatment	Soil Loss	TSS			icle size % p	e size % passing		
	(kg ha ⁻¹)	(kg ha ⁻¹)	(NTU)					
				1 in	1/2 in	1/4 in		
Compost 1	95.8	52.1	36	99	64	30		
Compost 2*	129.2	60.4	60	99	85	67		
Compost 3*	208.3	64.6	87	99	89	76		
Compost 4**	408.3	283.3	288	99	99	95		

*Did not meet TX DOT specification for erosion control compost particle size distribution.

**Did not meet TX DOT, USEPA, IN DNR, or CONEG specification for erosion control blanket particle size distribution

